Learning Nonlinear Dynamical Systems Using the Expectation– Maximization Algorithm
نویسندگان
چکیده
Since the advent of cybernetics, dynamical systems have been an important modeling tool in fields ranging from engineering to the physical and social sciences. Most realistic dynamical systems models have two essential features. First, they are stochastic – the observed outputs are a noisy function of the inputs, and the dynamics itself may be driven by some unobserved noise process. Second, they can be characterized by
منابع مشابه
Identification of Nonlinear Systems using Gaussian Mixture of Local Models
Identification of operating regime based models of nonlinear dynamic systems is addressed. The operating regimes and the parameters of the local linear models are identified directly and simultaneously based on the Expectation Maximization (EM) identification of Gaussian Mixture Model (GMM). The proposed technique is demonstrated by means of the identification of a neutralization reaction in a ...
متن کاملUW CSE Technical Report 03-06-02 The Trajectory Mixture Model for Learning Collections of Nonlinear Functions
Learning statistical models of nonlinear dynamical systems has long been an important problem in machine learning. The problem becomes especially hard when the dynamical system is composed of a mixture of nonlinear models, not just a single nonlinear model. To address this general case of nonlinear time-series modeling, we propose a new hierarchical architecture: the Trajectory Mixture Model (T...
متن کاملRegularized EM algorithm for sparse parameter estimation in nonlinear dynamic systems with application to gene regulatory network inference
Parameter estimation in dynamic systems finds applications in various disciplines, including system biology. The well-known expectation-maximization (EM) algorithm is a popular method and has been widely used to solve system identification and parameter estimation problems. However, the conventional EM algorithm cannot exploit the sparsity. On the other hand, in gene regulatory network inferenc...
متن کاملGroup Sparse Bayesian Learning for Active Surveillance on Epidemic Dynamics
Predicting epidemic dynamics is of great value in understanding and controlling diffusion processes, such as infectious disease spread and information propagation. This task is intractable, especially when surveillance resources are very limited. To address the challenge, we study the problem of active surveillance, i.e., how to identify a small portion of system components as sentinels to effe...
متن کاملSigma-Point Filtering and Smoothing Based Parameter Estimation in Nonlinear Dynamic Systems
We consider approximate maximum likelihood parameter estimation in nonlinear state-space models. We discuss both direct optimization of the likelihood and expectation– maximization (EM). For EM, we also give closed-form expressions for the maximization step in a class of models that are linear in parameters and have additive noise. To obtain approximations to the filtering and smoothing distrib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001